Mutations to Gly2370, Gly2373 or Gly2375 in malignant hyperthermia domain 2 decrease caffeine and cresol sensitivity of the rabbit skeletal-muscle Ca2+-release channel (ryanodine receptor isoform 1).
نویسندگان
چکیده
Mutations G2370A, G2372A, G2373A, G2375A, Y3937A, S3938A, G3939A and K3940A were made in two potential ATP-binding motifs (amino acids 2370-2375 and 3937-3940) in the Ca(2+)-release channel of skeletal-muscle sarcoplasmic reticulum (ryanodine receptor or RyR1). Activation of [(3)H]ryanodine binding by Ca(2+), caffeine and ATP (adenosine 5'-[beta,gamma-methylene]triphosphate, AMP-PCP) was used as an assay for channel opening, since ryanodine binds only to open channels. Caffeine-sensitivity of channel opening was also assayed by caffeine-induced Ca(2+) release in HEK-293 cells expressing wild-type and mutant channels. Equilibrium [(3)H]ryanodine-binding properties and EC(50) values for Ca(2+) activation of high-affinity [(3)H]ryanodine binding were similar between wild-type RyR1 and mutants. In the presence of 1 mM AMP-PCP, Ca(2+)-activation curves were shifted to higher affinity and maximal binding was increased to a similar extent for wild-type RyR1 and mutants. ATP sensitivity of channel opening was also similar for wild-type and mutants. These observations apparently rule out sequences 2370-2375 and 3937-3940 as ATP-binding motifs. Caffeine or 4-chloro-m-cresol sensitivity, however, was decreased in mutants G2370A, G2373A and G2375A, whereas the other mutants retained normal sensitivity. Amino acids 2370-2375 lie within a sequence (amino acids 2163-2458) in which some eight RyR1 mutations have been associated with malignant hyperthermia and shown to be hypersensitive to caffeine and 4-chloro-m-cresol activation. By contrast, mutants G2370A, G2373A and G2375A are hyposensitive to caffeine and 4-chloro-m-cresol. Thus amino acids 2163-2458 form a regulatory domain (malignant hyperthermia regulatory domain 2) that regulates caffeine and 4-chloro-m-cresol sensitivity of RyR1.
منابع مشابه
Functional characterization of a distinct ryanodine receptor mutation in human malignant hyperthermia-susceptible muscle.
Malignant hyperthermia is an inherited autosomal disorder of skeletal muscle in which certain volatile anesthetics and depolarizing muscle relaxants trigger an abnormally high release of Ca2+ from the intracellular Ca2+ store, the sarcoplasmic reticulum. In about 50% of cases, malignant hyperthermia susceptibility is linked to the gene encoding the skeletal muscle ryanodine receptor/Ca2+ releas...
متن کامل4-Chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor.
The aim of the present study was to determine the effects of 4-chloro-m-cresol (4-CmC), a preservative often added to drugs intravenously administered, on the skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor. In heavy SR vesicles obtained from rabbit back muscles, 4-CmC stimulated (Ca2+)-activated [3H]ryanodine binding with an EC50 of about 100 microM. In the ...
متن کامل4-Chloro-m-cresol: a specific tool to distinguish between malignant hyperthermia-susceptible and normal muscle.
Single-channel recordings have indicated that ryanodine receptor (RyR1) mutation Arg615Cys of porcine malignant hyperthermia-susceptible (MHS) muscle is not directly associated with the enhanced caffeine sensitivity of MH(S) muscle [1]. In the present study, the effect of a novel activator of RyR1, 4-chlorom-cresol (4-CmC), was investigated on high-affinity [3H]ryanodine binding to porcine skel...
متن کاملDivergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region
The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce ...
متن کاملIncreased sensitivity of the ryanodine receptor to halothane-induced oligomerization in malignant hyperthermia-susceptible human skeletal muscle.
Mutations in the skeletal muscle RyR1 isoform of the ryanodine receptor (RyR) Ca2+-release channel confer susceptibility to malignant hyperthermia, which may be triggered by inhalational anesthetics such as halothane. Using immunoblotting, we show here that the ryanodine receptor, calmodulin, junctin, calsequestrin, sarcalumenin, calreticulin, annexin-VI, sarco(endo)plasmic reticulum Ca2+-ATPas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 360 Pt 1 شماره
صفحات -
تاریخ انتشار 2001